package jcgp.backend.modules.es;
import java.util.Arrays;
import jcgp.backend.modules.mutator.Mutator;
import jcgp.backend.parameters.BooleanParameter;
import jcgp.backend.parameters.IntegerParameter;
import jcgp.backend.parameters.ParameterStatus;
import jcgp.backend.population.Chromosome;
import jcgp.backend.population.Population;
import jcgp.backend.resources.Resources;
/**
* Tournament selection
*
* This strategy generates a new population by selecting a specified number
* of chromosomes from the original population and selecting the fittest out
* of the isolated subset (the tournament). The selected individual is mutated
* using the specified mutator. This process is repeated until the new population
* is complete.
*
* One integer parameter is used to control this strategy: tournament
* size. This must always be greater than 0 and smaller than or equal to the
* population size. Setting it to equal population size results in the same
* chromosome being selected for every tournament, and setting it to 1 leads
* to an effectively random search.
*
* One additional parameter, report, controls whether a detailed log of the
* algorithm's operation is to be printed or not. Reports respect the report
* interval base parameter.
*
* @see EvolutionaryStrategy
* @author Eduardo Pedroni
*
*/
public class TournamentSelection extends EvolutionaryStrategy {
private IntegerParameter tournamentSize;
private BooleanParameter report;
/**
* Creates a new instance of TournamentSelection.
*
* @param resources a reference to the experiment's resources.
*/
public TournamentSelection(final Resources resources) {
super(resources);
tournamentSize = new IntegerParameter(1, "Tournament size") {
@Override
public void validate(Number newValue) {
if (newValue.intValue() <= 0) {
status = ParameterStatus.INVALID;
status.setDetails("Tournament size must be greater than 0.");
} else if (newValue.intValue() > resources.populationSize()) {
status = ParameterStatus.INVALID;
status.setDetails("Tournament size must not be greater than the population size.");
} else if (newValue.intValue() == 1) {
status = ParameterStatus.WARNING;
status.setDetails("A tournament size of 1 results in a random search.");
} else if (newValue.intValue() == resources.populationSize()) {
status = ParameterStatus.WARNING;
status.setDetails("A tournament size equal to population size results in the same individual being selected every time.");
} else {
status = ParameterStatus.VALID;
}
}
};
report = new BooleanParameter(false, "Report");
setName("Tournament selection");
registerParameters(tournamentSize, report);
}
@Override
public void evolve(Population population, Mutator mutator) {
/* Create an entirely new population by isolating random subsets of
* the original population and choosing the fittest individual within
* that subset. Each chosen individual is mutated and copied back into the
* population.
*/
// sort the population by fitness to make things easier
population.sort();
// this array holds the new population temporarily, until it is copied over
Chromosome[] newPopulation = new Chromosome[getResources().populationSize()];
// start by selecting all of the chromosomes that will be promoted
for (int i = 0; i < getResources().populationSize(); i++) {
if (report.get()) getResources().reportln("[ES] Starting tournament " + i);
/* the population is sorted in ascending order of fitness,
* meaning the higher the index of the contender, the fitter
* it is
*/
int[] contenders = new int[tournamentSize.get()];
for (int t = 0; t < tournamentSize.get() - 1; t++) {
contenders[t] = getResources().getRandomInt(getResources().populationSize());
}
if (report.get()) getResources().reportln("[ES] Selected contenders: " + Arrays.toString(contenders));
Arrays.sort(contenders);
if (report.get()) getResources().reportln("[ES] Chr " + contenders[contenders.length - 1] + " wins the tournament, copying and mutating...");
// create a copy of the selected chromosome and mutate it
newPopulation[i] = new Chromosome(population.get(contenders[contenders.length - 1]));
mutator.mutate(newPopulation[i]);
}
if (report.get()) getResources().reportln("[ES] Tournaments are finished, copying new chromosomes into population");
// newPopulation has been generated, copy into the population
for (int c = 0; c < getResources().populationSize(); c++) {
population.get(c).copyGenes(newPopulation[c]);
}
if (report.get()) getResources().reportln("[ES] Generation is complete");
}
}