package jcgp.backend.modules.es;
import jcgp.backend.modules.mutator.Mutator;
import jcgp.backend.parameters.BooleanParameter;
import jcgp.backend.parameters.IntegerParameter;
import jcgp.backend.parameters.ParameterStatus;
import jcgp.backend.population.Population;
import jcgp.backend.resources.Resources;
/**
* (μ + λ)-ES
*
* This strategy selects the μ fittest chromosomes from the population.
* The promoted individuals are copied into the new population and mutated
* λ times, but also carried forward unchanged. The total population size
* is μ + λ.
*
* Two integer parameters are used to control this strategy: parents
* and offspring. They are constrained in that they must always add up to
* the population size, and must never be smaller than 1.
*
* One additional parameter, report, controls whether a detailed log of the
* algorithm's operation is to be printed or not. Reports respect the report
* interval base parameter.
*
* @see EvolutionaryStrategy
* @author Eduardo Pedroni
*
*/
public class MuPlusLambda extends EvolutionaryStrategy {
private IntegerParameter mu, lambda;
private BooleanParameter report;
/**
* Creates a new instance of MuPlusLambda.
*
* @param resources a reference to the experiment's resources.
*/
public MuPlusLambda(final Resources resources) {
super(resources);
mu = new IntegerParameter(1, "Parents (\u03BC)") {
@Override
public void validate(Number newValue) {
if (newValue.intValue() + lambda.get() != getResources().populationSize()) {
status = ParameterStatus.INVALID;
status.setDetails("Parents + offspring must equal population size.");
} else if (newValue.intValue() <= 0) {
status = ParameterStatus.INVALID;
status.setDetails("ES needs at least 1 parent.");
} else {
status = ParameterStatus.VALID;
}
}
};
lambda = new IntegerParameter(4, "Offspring (\u03BB)") {
@Override
public void validate(Number newValue) {
if (newValue.intValue() + mu.get() != getResources().populationSize()) {
status = ParameterStatus.INVALID;
status.setDetails("Parents + offspring must equal population size.");
} else if (newValue.intValue() <= 0) {
status = ParameterStatus.INVALID;
status.setDetails("ES needs at least 1 offspring.");
} else {
status = ParameterStatus.VALID;
}
}
};
report = new BooleanParameter(false, "Report");
setName("(\u03BC + \u03BB)");
registerParameters(mu, lambda, report);
}
@Override
public void evolve(Population population, Mutator mutator) {
// sort the population neutrally
sort(population);
// population is now sorted such that the new parents are in the last mu positions
for (int i = 0; i < getResources().populationSize() - mu.get(); i++) {
// select a random parent out of the mu population parents
int randomParent = getResources().populationSize() - 1 - getResources().getRandomInt(mu.get());
if (report.get()) getResources().reportln("[ES] Copying Chr " + randomParent + " to population position " + i);
// copy it into the offspring position
population.copyChromosome(randomParent, i);
// mutate the new offspring chromosome
if (report.get()) getResources().reportln("[ES] Mutating copied chromosome");
mutator.mutate(population.get(i));
}
if (report.get()) getResources().reportln("[ES] Generation is complete");
}
/**
* Neutrally sorts the specified population.
*
* Optimised sorting methods tend to be stable, meaning
* the order of elements which are already ordered is not
* changed. While performing faster, such sorting algorithms
* do not promote neutral drift, an important aspect of CGP.
*
* This sort iterates through the population offspring (first lambda
* elements) and compares each with each of the parents (last mu
* elements), overwriting the parent if the offspring's fitness
* is greater than or equal to the parent's.
* It is biased towards offspring: parents are replaced with
* equally fit offspring as often as possible.
*
* @param population the population to sort.
*/
private void sort(Population population) {
/* Create an array with the index of each of the current parents.
* This is done to speed up the sort. No deep chromosome copies are
* made until the sort is finished; instead, only indices are copied.
*/
int[] parents = new int[mu.get()];
for (int i = 0; i < parents.length; i++) {
parents[i] = lambda.get() + i;
}
// cycle through the offspring, i.e. the first lambda elements of the population
for (int o = 0; o < getResources().populationSize() - mu.get(); o++) {
// compare each offspring with each parent, as stored in parents
for (int p = 0; p < parents.length; p++) {
/* replace parent if the offspring fitness and greater than or equal to its own
* if it is equal to, only replace if it is an old parent, if it is greater than,
* replace regardless
*/
if ((population.get(o).getFitness() == population.get(parents[p]).getFitness() && parents[p] >= lambda.get())
|| population.get(o).getFitness() >= population.get(parents[p]).getFitness()) {
parents[p] = o;
// offspring has been selected, check the next one
break;
}
}
}
/* selection is complete, parents now contains the indices of each selected offspring
* time to perform the deep copies
*/
for (int c = 0; c < parents.length; c++) {
// copy each selected index in parent to each parent position in the population
population.copyChromosome(parents[c], lambda.get() + c);
}
}
}